skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Xing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial intelligence and recent advances in deep learning architectures, including transformer networks and large language models, change the way people think and act to solve problems. Software engineering, as an increasingly complex process to design, develop, test, deploy, and maintain large-scale software systems for solving real-world challenges, is profoundly affected by many revolutionary artificial intelligence tools in general and machine learning in particular. In this roadmap for artificial intelligence in software engineering, we highlight the recent deep impact of artificial intelligence on software engineering by discussing successful stories of applications of artificial intelligence to classic and new software development challenges. We identify the new challenges that the software engineering community has to address in the coming years to successfully apply artificial intelligence in software engineering, and we share our research roadmap toward the effective use of artificial intelligence in the software engineering profession, while still protecting fundamental human values. We spotlight three main areas that challenge the research in software engineering: the use of generative artificial intelligence and large language models for engineering large software systems, the need of large and unbiased datasets and benchmarks for training and evaluating deep learning and large language models for software engineering, and the need of a new code of digital ethics to apply artificial intelligence in software engineering. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)